July 25th, 2009

Pequeño parte de observación. 25 de julio de 2009

Dibujo de Júpiter con su ImpactoLugar de observación: “Área 50”, de la Cruz del Norte, en Venturada, Madrid.
Sin viento y sin apenas turbulencia. Júpiter  se encontraba a unos 30º sobre el horizonte.
¡Gracias a los compañeros de afición de la Cruz del Norte!

Telescopio Takahashi TSA 102, 121x, con ocular Plössl 3000 series de Meade, 6,7 mm  y prisma cenital Meade Series 5000 para mejorar el contraste.

La zona del impacto era ovalada, se apreciaba de un color negro intenso y estaba rodeada de una zona, también ovalada y concéntrica, pero de tonalidad más clara. El conjunto parecía ser más pequeño que la Gran Mancha Roja.

Se trata de un impacto descubierto por Anthony Wesley, un aficionado australiano, el día 19 de julio de este año. En estas fechas se cumplen 15 años de que los fragmentos del Schoemaker-Levy 9 chocaran también contra Júpiter.

 

Más información:

Impact Mark on Jupiter, 19th July 2009 Página del descubridor, el astrónomo aficionado australiano Anthony Wesley.

El descubrimiento lo hizo con su Newton artesanal de 36 centímetros, sobre montura Losmandy Titan y Barlow Televue 5x (forzada a 7,7x). Cámara Point Grey Research Dragonfly2 monocromática y filtros Astrodon I-Series RGB para la composición a color. Para la obtención de esta espectacular imagen final empleó la técnica del apilado, con Registax y otros programas, en su ordenador.

Nuevas imágenes de la NASA demuestran que un objeto ha golpeado a Júpiter (En AstroSETI)

Surprise Collision on Jupiter Captured by Gemini Telescope (Imágen en infrarrojo tomada el 22 de julio por el Gemini Observatory)

Publicado en Júpiter, Observación y telescopios, Sistema solar | Comments Off on Observación del impacto sobre Júpiter
July 3rd, 2009

Córdoba, 20, 21 y 22 de Noviembre 2009

La Sociedad Española de Astronomía (SEA) anuncia un congreso dedicado a fomentar la colaboración entre los astrónomos aficionados y los astrónomos profesionales.

Página oficial de este proyecto

Organizado por la Sociedad Española de Astronomía en
colaboración con la Universidad de Córdoba, el Instituto de
Astrofísica de Canarias, el Instituto de Astrofísica de
Andalucía, Consolider-GTC y patrocinado por CajaSol.

A. ANTECEDENTES Y MOTIVACION CIENTIFICA

En las tres últimas décadas la Astronomía española ha sufrido un cambio drástico, desde ocupar una posición meramente anecdótica en el contexto internacional, hasta convertirse en el octavo país del mundo en producción de artículos astronómicos y el décimo en citaciones. En esta transformación ha tenido mucho que ver la instalación en
España, mediante convenios internacionales, de una red de telescopios en los rangos de longitudes del visible al radio pasando por el infrarrojo. Este aspecto observacional de la astronomía española, que tantas veces se ha puesto de manifiesto en los medios de comunicación, ha generado un gran interés dentro de la sociedad española y han
favorecido la formación de una populosa comunidad de astrónomos amateurs con una clara vocación observacional y un amplio parque de colectores y detectores.

En los últimos años, los avances tecnológicos han incrementado considerablemente el potencial observacional de los astrónomos amateur de nuestro país, ofreciendo la portunidad de su participación en proyectos de investigación científica competitivos en colaboración con astrónomos profesionales. Esto se debe principalmente al acceso a
detectores CCD de última generación y de equipos informáticos de considerable potencia de cálculo a precios asequibles. Por otra parte, la disponibilidad de un mayor ancho de banda en internet ha dado también lugar a la proliferación de observatorios robóticos situados en cielos muy oscuros, que son controlados con extraordinaria
precisión desde sus hogares, lo que ha permitido que algunos astrofotógrafos, utilizando instrumentos modestos, obtengan imágenes cuya calidad es equiparable y, en algunos casos supera, a las obtenidas hasta ese momento por observatorios profesionales. Esto representa una estupenda oportunidad para desarrollar trabajos de calidad científica de una manera mucho más flexible, al poder disponer de grandes cantidades de tiempo de observación en cualquier época del año e independientes de las rigurosas colas de observación de las instalaciones profesionales.

Este fenómeno ha tenido también un notable impacto en nuestro pais, que cuenta hoy día con un grupo de excelentes astrofotógrafos cuyos trabajos deslumbran en páginas astronómicas más populares de internet. Además, son cada vez más numerosos los grupos de investigación españoles que colaboran con sociedades amateurs en el desarrollo de programas científicos que producen resultados de alto impacto. Motivados por este deseo de hacer ciencia, son también numerosos los grupos de astrónomos no profesionales españoles que han obtenido ayuda local o autonómica para construir observatorios para conducir proyectos científicos a largo plazo. Pero, aunque atisbamos la punta del iceberg, la comunidad científica española desconoce todavía en profundidad la potencialidad de esta singular batería de colectores en manos de estos astrónomos no profesionales. Es por lo tanto fundamental establecer un dialogo entre ambas comunidades que permita identificar aquellos proyectos claves y competitivos que exploten al máximo la capacidad científica de estas instalaciones.

B. OBJETIVOS DEL CONGRESO

El objetivo principal de este congreso es reunir por primera vez a astrónomos profesionales y no profesionales españoles para conocer el potencial observacional de los astrónomos amateur de nuestro pais y ofrecer la oportunidad de su participación en proyectos de investigación científica competitivos en colaboración con astrónomos
profesionales (colaboración Pro-Am). En este contexto, se plantea abordar los siguientes objetivos:

a) Confeccionar un listado de telescopios e instrumental de la comunidad de astrónomos amateur idóneo para el desarrollo de proyectos de investigación científica competitivos.

b) Actualizar las líneas de investigación prioritarias en las que la participación de astrónomos no profesionales puedan tener mayor impacto y encontrar aquellas que sean de interés para ambas comunidades.

c) Crear un protocolo de comunicación entre ambos colectivos que permita un rápido contacto entre ambas para la realización de proyectos de investigación conjuntos.

C. ORGANIZACION Y PROGRAMA PROVISIONAL

El congreso esta organizado por la Sociedad Española de Astronomía, en colaboración con la Universidad de Córdoba y el Instituto de Astrofísica de Canarias.

El programa del congreso estará compuesto por una serie de ponencias invitadas que serán impartidas por una selección de astrónomos profesionales y amateurs que han demostrado un papel relevante en la colaboración Pro-Am en nuestro pais. Esta lista incluye expertos y observadores que han destacado recientemente en las diversas líneas
que se debatirán durante el congreso, entre las que destacan: Arqueología galáctica, NEOS, objetos trans-neptunianos, meteoros y bólidos, estrellas variables cataclísmicas, actividad de tipo cometaria en asteroides, brotes de rayos gamma, seguimiento de atmósferas planetarias. La lista también incluye al director del Instituto de Astrofísica de Canarias, al presidente de la Sociedad Española de Astronomía y al director del Centro Hispano-Aleman de Calar Alto.

Conferenciantes profesionales invitados

Dr. Jose Luis Ortiz (IAA, CSIC)
Dr. Alberto Castro-Tirado (IAA, CSIC)
Dr. David Martínez- Delgado (IAC)
Dr. Pablo Rodríguez Gil (IAC)
Dr. Vicent Martínez (Univ. Valencia)
Dr. Emilio J. Alfaro (IAA, CSIC)
Dr. Luis R. Bellot (IAA, CSIC)
Dr. Joao Alves (Director Observatorio Calar Alto)
Dr. Francisco Sánchez (Director IAC)
Conferenciantes no profesionales invitados
Sr. Angel Gómez Roldan (Redactor Jefe de la revista Astronomía)
Sr. Diego Rodríguez (Grupo M1, búsqueda de supernovas)
Sr. Jesus R. Sánchez (atmósferas planetarias con webcams)
Sr. Antonio Fernández (astrofotógrafo de reconocimiento internacional)
Sr. Juan Lacruz (descubridor de asteroides, asteroides con actividad de tipo cometaria)
Sr. Antoni Ardanuy (Presidente de la Agrupación Astronómica de Sabadell)

El resto de ponencias serán seleccionadas entre las solicitudes enviadas por los participantes a través de la aplicación que estará disponible en la página web de SEA a finales del mes de julio. Con objeto de asegurar la calidad científica del evento, el comité organizador del congreso cuenta con el asesoramiento de un Comité Cientifico compuesto por astrofísicos profesionales de distintos centros de investigación y universidades españolas. Este comité colaborará en el diseño del programa definitivo y en la selección de las contribuciones orales.

Existe también la posibilidad de presentar posters sobre trabajos de investigación Pro-Am recientes o instalaciones no-profesionales de nuestro pais. En algunos casos, el Comité Científico puede ofrecer a aquellos ponentes cuyas charlas no han podido ser comodadas en el programa a presentar sus trabajos en este formato.

D. FECHAS IMPORTANTES E INSCRIPCIONES

El congreso tendrá lugar los días 20, 21 y 22 de Noviembre de 2009 en el Salón de actos del Rectorado de la Universidad de Córdoba. El congreso tendrá lugar en este ein de semana para facilitar el desplazamiento de los astrónomos no profesionales.

Las inscripciones al congreso podrán realizarse a través de la pagina web del congreso, que estará disponible a mediados de julio de 2009 en la dirección http://www.iac.es/congreso/proam/ . Debido a las limitaciones de espacio de la sala de la conferencia, el número de participantes está limitado a de 150. Se establece una cuota de inscripción de 30 Euros,
que deberá abonarse en la cuenta bancaria del congreso antes del 30 de Septiembre de 2009. Pasada esta fecha, la cuota de inscripción se incrementará a 50 Euros.

La fecha límite para el envío de resumenes de ponencias y posters es el 15 de Septiembre de 2009. El Comite Científico Asesor hará la selección de las ponencias seleccionadas antes del 30 de Septiembre de 2009.

COMITE ORGANIZADOR LOCAL (LOC)

Dr. Manuel Sáez Cano, Presidente del LOC, Universidad de Córdoba
Dr. David Martínez Delgado, IAC
Dr. Antonio Ortiz Mora, Universidad de Córdoba
Dr. Enrique Pérez, IAA (CSIC)

COMITE CIENTIFICO ASESOR (SOC)

Dr. Emilio J. Alfaro Navarro (IAA,CSIC), Presidente de la SEA
Dr. Francesca Figueras (Universidad de Barcelona)
Sr. Angel Gómez Roldán (Equipo Sirius)
Dr. Angel R. López Sánchez (Australia Telescope National Facility)
Dr. David Martínez Delgado (IAC), Presidente del SOC
Dr. Manuel Torralbo Rodríguez (Universidad de Córdoba)
Dr.Vicent Martínez (Universidad de Valencia)
Sr. Alejandro Sánchez de Miguel (Universidad Complutense de Madrid)
Dr. David Valls-Gabaud (Observatorio de Meudon, Paris)
Dr. Jaime Zamorano (Universidad Complutense de Madrid)

Publicado en Comunicación de la ciencia | Comments Off on Colaboración Profesional-Amateurs en investigación astronómica
December 24th, 2008

Los astrónomos profesionales piden ayuda a los aficionados una vez más. Esta vez, para localizar ecos de supernovas que se apagaron hace cientos o miles de años y así poderlas estudiar ahora. Mediante los equipos de que disponen hoy en día muchos astrofotógrafos, esto es posible.

Reproducimos un pequeño resumen del artículo explicativo de Doug Wells complementado por otras informaciones relacionadas.

Fuente: How to Hunt for Supernova Fossils in the Milky Way, por Doug Wells, Sky and Telescope, junio de 2008 y otras fuentes diversas.

La teoría

A pesar de que nuestra galaxia está repleta de restos de explosiones de supernova, sólo han sido registradas directamente 5 supernovas galácticas (véase la tabla inferior) y todas hace más de 400 años. Todo lo que sabemos de las supernovas de nuestra galaxia que han sido visibles a simple vista procede de las descripciones de los registros históricos. Podríamos aprender mucho más sobre ellas si pudiéramos medir sus curvas de luz (siguiendo las subidas y bajadas de su brillo) y examinar sus espectros, que son reflejados por las nebulosas al igual que la Luna refleja el espectro del Sol. En la tabla adjunta se reproducen los datos de las supernovas históricas de nuestra galaxia. El estallido que originó la fuente Cas A ocurrió probablemente a finales del siglo XVII.

Se estima que se producen, aproximadamente, dos supernovas en nuestra galaxia cada siglo, de modo que en los últimos 400 años se han debido de producir unos 8 estallidos que habrán quedado, probablemente, ocultos por el velo de gas y polvo que constituye nuestra propia Vía Láctea. De modo que, si se quieren encontrar ecos de supernovas, no se debe buscar sólamente en las inmediaciones de los remanentes de supernova conocidos, sino también en las cercanías del plano de la Vía Láctea (véase más abajo).

Ecos de luz de una supernova
Esquema simplificado de cómo una nebulosa puede reflejar la luz de una explosión de
supernova y producir dos ecos de luz en dos momentos distintos. La fuente de luz y
la Tierra siempre se representan en los focos de una elipse, en estos casos.

 

Ecos de luz

A un eco de luz le lleva más tiempo llegar hasta nosotros que a la luz que viene directamente de la supernova, puesto que el eco lleva un camino más largo. Aunque la luz directa llegara a nosotros hace cientos de años, podemos aún ser capaces de registrar el eco retrasado. Lo único que necesitamos es una nube de polvo interestelar que refleje la luz de la supernova hacia La Tierra de modo que nos llegue mientras tengamos nuestros telescopios apuntando hacia ella.

Dos célebres astrónomos y astrofísicos del siglo XX, Jan Oort y Fritz Zwicky más tarde, fueron los primeros en darse cuenta de las posibilidades de esta nueva área de estudio, aunque fueron Eugène M. Antoniadi y Cammile Flammarion los primeros en observar un fenómeno de este tipo, eso sí, en los ecos de luz de una nova, no de una supernova. Fue en la célebre Nova Persei de 1901.

Nova Persei 1901
Observaciones de los ecos de luz (especialmente donde indica la flecha roja)
de la Nova Persei 1901por Antoniadi, con una separación temporal de 2 meses.
La cuadrícula representa separaciones de 2 minutos de arco.

La técnica

Se necesita tomar imágenes profundas de grandes áreas del cielo con los aumentos suficientes y con una separación en el tiempo de unos meses, para sustraer después las imágenes más recientes de las más antiguas, y buscar retazos de luz que se hayan movido entre ambas exposiciones.

El equipo

El telescopio

Dado el tipo de imágenes que han de tomarse, son necesarios telescopios con la mayor distancia focal (F) posible y además de la menor relación focal que se pueda (f).

La CCD

Es imprescindible una CCD refrigerada, o que al menos pueda operar a una temperatura constante.

Cuantos más niveles de gris pueda distinguir, mejor, ya que han de buscarse diferencias de brillo en el cielo muy sutiles. Por eso no es suficiente con una cámara de 8 bits, sino que es preferible emplear, al menos, una de 12 bit, aunque son mejores, lógicamente, las de 14 y 16 bits. Esta mayor profundidad de bits también asegura una sustracción de imágenes de una mayor calidad.

Es importante, además, que el perfil de brillo de las imágenes (PSF) sea lo más estable posible. En ausencia de turbulencias atmosféricas y con un guiado excelente, el perfil de brillo de las imágenes será determinado exclusivamente por la óptica y será muy similar en noches distintas.

Los filtros

Los ecos de supernova son generalmente más azulados que la luz directa del estallido de la estrella, debido a que los pequeños granos de polvo interestelar relfejan la luz azul con mayor eficiencia que la roja. Por eso los filtros de 700 nanometros  o más se consideran mejores para este cometido, también porque estos filtros mejoran el contraste de las imágenes, al eliminar el resplandor rojizo de nuestra atmósfera.

Pueden ser útiles los filtros nebulares de banda ancha que bloquean la luz roja e infrarroja tanto como la contaminación lumínica y todo tipo de emisiones producidas por el aire.

Debido a que la dispersión de la luz de la Luna es azulada, deberán buscarse noches sin luna.

El programa informático (software)

Las funciones clave del programa que se emplée para analizar las imágenes son:

  • La habilidad para alinear dos imágenes tomadas en noches distintas.
  • La igualación de los PSF (perfiles de brillo) de las imágenes.
  • El ajuste de las diferencias de brillo del cielo.
  • La sustracción de una imagen a la otra.

ISIS. Es gratuito y más fácil de usar gracias a su tutorial. Puede descargarse en http://www2.iap.fr/users/alard/package.html

MaxIM DL. En http://www.cyanogen.com/maxim_main.php

Mira. En http://www.mirametrics.com

En los dos últimos hay que crear los scripts necesarios para cumplir con los requisitos de eficiencia, aunque hay grupos de usuarios en la web que pueden proporcionar una valiosa ayuda.

Qué buscar

Se estima que los ecos más fuertes asociados con las supernovas de Tycho (1572), Kepler (1604) y probablemente con Cas A debería tener una luminosidad de 21,5 magnitudes por segundo cuadrado, comparable con brillo del cielo en una noche sin luna en una zona rural. Wells manifiesta que esto debería ser detectable con los medios de aficionado descritos anteriormente.

En la Gran Nube de Magallanes han sido detectados varias veces los ecos de la supernova 1987 A, visible a simple vista en el verano austral de aquel año. Esos ecos se han venido desplazando entre 10 y 30 segundos de arco por año. Esto quiere decir que se podrían detectar ecos de luz en la Vía Láctea con exposiciones tomadas en un intervalo de dos meses.

Candidatos a ecos de luz

El astrofotógrafo debe plantearse una serie de preguntas, siempre con el fin de asegurarse de que, efectivamente, ha detectado un eco de supernova.

  • ¿Ha mirado montones de imágenes diferentes de modo que está familiarizado con los distintos artefactos que introduce el sistema? ¿Está el objeto móvil cerca del borde de la CCD? ¿Podría deberse a que un poco de luz se ha dispersado en su telescopio o cámara?
  • Si tiene imágenes de más de dos épocas, ¿son los espacios de los supuestos ecos consistentes con un movimiento uniforme? (Deberían serlo). Si la zona objetivo se encuentra en el cielo nocturno, ¿podría tomar otra imagen de confirmación?
  • Si está buscando cerca de la posición de una supernova histórica o de un remanente de joven supernova, ¿está el candidato a eco más lejos del lugar de la explosión en la última imagen que en la primera? (Debería estar).

Dónde buscar

A unos 20º del ecuador galáctico

Como dijimos antes, se estima que en una galaxia como la nuestra, y siempre según los modelos, se deberían estar produciendo unas 2 explosiones de supernova por siglo. Sin embargo no todas son observables desde la Tierra debido a que nos encontramos inmersos en el propio disco de la galaxia, que nos rodea y a la vez nos oculta la mayor parte de la materia de la propia galaxia. Por eso no se ha observado una sola supernova en los últimos 400 años, de todas las que podrían haberse producido dentro de nuestra Vía Láctea.

Así, se recomienda realizar la búsqueda en el área de cielo que se encuentra dentro de unos 20º del ecuador galáctico, porque si bien las nubes de gas y polvo nos estarían ocultando todas esas supernovas que podrían haberse producido en los últimos 400 años (8 supernovas), sí que ha habido tiempo para que la luz haya recorrido la distancia necesaria para que se refleje en las nubes de gas y polvo que se sitúan más separadas del plano fundamental de nuestra galaxia.

Cerca de las supernovas históricas

En la tabla insertada figuran las coordenadas de las 6 supernovas históricas registradas hasta la fecha.

Supernova Constelación Distancia A. R.
Declinación
Tipo
1006 Lupus 7.200 años luz 15h 02,8′ -41º 57′ Ia
1054 Taurus 6.500 años luz 05h 34,6′ +22º 01′ II
1181 Cassiopeia 10.400 años luz 02h 05,6′ +64º 50′ II
1572 Cassiopeia 7.800 años luz 00h 25,1′ +64º 10′ Ia
1604 Ophiuchus 9.500 años luz 17h 30,6′ -21º 29′ ?
Cas A Cassiopeia 11.000 años luz 23h 23,4′ +58º 49′ II

Este mapa nos da una idea de dónde se encuentran las zonas más interesantes para obtener una búsqueda positiva en las inmediaciones de la constelación de Cassiopeia.

Supernovas en Cassiopeia
Regiones óptimas para la búsqueda de ecos de luz en torno a los sitios donde explotaron
tres de nuestras supernovas históricas.

 

En torno a  determinadas radiofuentes

A lo largo del ecuador galáctico existen numerosas radiofuentes compactas, perfectas candidatas a ser remanentes de supernova. Doug Wells se refiere especialmente a G13.9-0.0 (coordenadas: 18h 15′ 36,6″; -16º 52′ 47″) y G14.4-0.0 (coordenadas: 18h 16′ 50,7″; -16º 52′ 47″).

Otros muchos remanentes de supernovas jóvenes se pueden encontrar aquí: “Búsqueda en Google”

Acerca de Doug Welch

Es profesor de Física y Astronomía en la Universidad McMaster de Ontario, Canadá, y un entusiasta de la colaboración entre los astrónomos aficionados y los profesionales.

Espera, emocionado, los correos de las personas interesadas en aportarle imágenes de ecos de supenova, en su dirección de correo electrónico: welch at physics.mcmaster.ca

Su página web en la universidad: http://www.physics.mcmaster.ca/people/faculty/Welch_DL_h.html

Publicado en Evolución Estelar, Observación y telescopios | Comments Off on Ecos de Supernova en la Vía Láctea
  •  

     

  •  

     

  •  

     

     

     

  • Etiquetas

  •  

     

  • Archivo de publicaciones

  •  

     

  •  

     

  • Mapa del sitio

  • ?>