September 1st, 2008

{mosimage}

La estrella Épsilon (ε) Aurigae se encuentra próxima a entrar en el mínimo de brillo, algo que ocurre una vez cada 27 años. Es la estrella variable binaria eclipsante de periodo más largo conocido. La AAVSO ya está pidiendo observaciones de la estrella para obtener la mayor cantidad de datos posible, puesto que aún no se sabe con seguridad qué tipo de objeto produce el eclipse. Para colmo, algunos astrónomos esperan que en unas décadas la estrella sufra un cataclismo sin precedentes.

Fuente: AAVSOSky and Telescope.

Actualización (10 de abril de 2010)

Universidad de Míchigan, 9 de abril de 2010.- El Michigan Infra-Red Combiner (MIRC) creado por la propia Universidad de Míchigan, toma una secuencia de fotografías de este fenómeno. Este instrumento, mediante un proceso de interferometría, combina la luz de cuatro telescopios en la red CHARA de la Universidad Estatal de Georgia.

Más información, incluído un espectacular video: Futurity.org

 

La binaria eclipsante con el periodo más largo conocido es la estrella Épsilon (ε) Aurigae, cercana en el cielo a Capella. Esta estrella es ocultada cada 9.890 días (~27,12 años) por un gran objeto de naturaleza aún desconocida. El fenómeno se resiste a encontrar una explicación satisfactoria.

Curva de luz de Épsilon Aurigae
Curva de luz de Épsilon Aurigae durante el último eclipse observado.

Épsilon Aurigae es un extraño sistema y no se tiene aún claro qué eclipsa a qué. Fue Johan Fritsch el primero que notó la variabilidad de la estrella en mitad del eclipse de 1821. Argelander y Heis comenzaron las observaciones sistemáticas de la variable a mediados del XIX y Ludendorff publicó en 1904 un artículo al respecto de los primeros estudios, siendo el primero en sugerir que se podía tratar de una estrella de tipo Algol. El espestro de la estrella principal no desaparece nunca por completo y en mitad del eclipse siempre se produce un extraño aumento de brillo.

¿Certezas?

Sabemos que se trata de una variable eclipsante, similar a Algol (Perseo) porque las caidas de brillo se suceden en intervalos regulares en el tiempo. Además de esto:

  • También ha sido posible medir, mediante interferometría, el diámetro aparente de la estrella principal, siendo de unas 2,2 milésimas de segundo de arco. No podemos saber su diámetro real o absoluto, puesto que no hay mediciones fiables de su distancia a nosotros; a pesar de ello presumimos que es una gigante o supergigante.
  • Esta estrella principal es probablemente una supergigante F0I pulsante, que sufriría leves variaciones periódicas de brillo, de modo similar a como lo hacen las variables cefeidas.
  • El objeto secundario es un disco tenue y de opacidad variable que está inclinado con respecto a su órbita en torno a la estrella F.
  • En el centro del disco tiene que haber un objeto muy masivo, puesto que de otro modo ese disco no podría tener una forma tan plana. Se supone que hay un objeto caliente, probablemente un sistema binario muy cercano (con una estrella de tipo B) más que un agujero negro (no se han detectado emisiones de altas energías).
  • El extraño aumeno de brillo que se produce en mitad de los eclipses podría deberse a que la parte central del disco de gas y polvo tendría un hueco, por el que se escaparía un poco de luz de la estrella principal. Ese hueco se porduciría por la presencia en el centro del disco de la supuesta binaria.
  • La masa combinada del disco y el objeto central casi equivale a la de la masa de la estrella F (unas 15 masas solares).

Algunos especulan con que la estrella principal sea una F2, y que el objeto eclipsante sea, según una hipótesis anterior planteada por Struve, Kuiper y Strömgren, una inmensa estrella, tan grande que podría ser casi transparente y que la eclipsaría por completo, pero no pudiendo oscurecerla completamente al dispersarse su luz en la tenue atmósfera de ese supuesto astro eclipsante.

El próximo eclipse está previsto que ocurra entre agosto de 2009 y mayo de 2011, y astrónomos de todo el mundo ya se están preparando para cuando ocurra.

Los profesionales vuelven a recabar la ayuda de los aficionados

La Asociación Americana de Observadores de Estrellas Variables (AAVSO) ha lanzado un comunicado para animar a todos los aficionados a medir el brillo de esta estrella. La AAVSO fundada en 1911, lleva recopilando datos de todos los eclipses de esta variable desde 1928. Se espera la recepción masiva de observaciones desde 2009, gracias a que es una estrella que se puede observar a simple vista. La AAVSO añade: “¡Son posibles incluso observaciones a plena luz del día!” . Se recomienda empezar ya a tomar estimaciones de brillo para entrenarse, ya trabajemos visualmente o con CCD.

De hecho ha sido aprobada una propuesta dentro de los trabajos del Año Internacional de la Astronomía , que se celebra en 2009 en todo el mundo.

carta de la AAVSO de Épsilon Aurigae

 

 

¿Cataclismo?

Para añadir más emoción, la ligera pulsación que muestra la estrella se ha estado acelerando desde los 95 días hasta los 67 días en los últimos años. Además la estrella se está encogiendo un 0,5% por año y la duración del eclipse “máximo” de 1983 fue un 25% mayor que la del eclipse de 1956. El especialista en Épsilon Aurigae, Robert Stencel, sugiere que algún tipo de cataclismo se está aproximando, posiblemente en unas décadas dentro de este siglo.

Una gran noticia para toda una generación de astrónomos aficionados

La de Auriga es una constelación muy bien conocida por todos los astrónomos aficionados del hemisferio norte, siendo Épsilon Aurigae una estrella especialmente llamativa dentro del asterismo. Son ahora muchos los que llevan contemplando el cielo poco menos de 30 años y esta va a ser la primera vez que van a observar el mínimo de la binaria eclipsante de más largo periodo conocida.

Publicado en Evolución Estelar, Observación y telescopios | Comments Off on El enigmático eclipse de Épsilon Aurigae
August 31st, 2008

Toshimi Taki es un famoso y reputado astrónomo japonés, quien muy amablemente nos ha dado permiso expreso para traducir una de sus obras, el planisferio a doble cara, válido para cualquier latitud del mundo. Si accedemos a la página web de Toshimi Taki, en Taki’s Home, podemos además encontrar mapas celestes con los que aprender a observar las estrellas.

Planisferio de doble cara por Toshimi Taki

Planisferio de Toshimi Taki
Fotografía por Toshimi Taki

Un planisferio es un instrumento astronómico que sirve para saber qué astros se van a poder observar en el cielo de un lugar en un momento dado.

Se trata de un planisferio de alta precisión, que, según Taki’s Home, ofrece las siguientes ventajas:

  • La distorsión en las cercanías del horizonte es menor que la de los planisferios comunes.
  • El mapa de estrellas se puede extraer de la carátula para usarlo como un mapa a cielo completo.
  • Teniendo las carátulas de las otras latitudes se puede usar el planisferio en todo el mundo.
  • Se pueden escribir anotaciones en el mapa, puesto que no está cubierto.
  • Permite correcciones de longitud.
  • Al indicarse la posición del Sol en el mapa, se pude hallar de forma aproximada el momento de salida y puesta del Sol.

Las estrellas que podemos ver en el cielo varían en función de la latitud del lugar de observación. Por eso se hace necesario un planisferio que se pueda adaptar a todas las regiones de la Tierra. Toshimi Taki ha creado 9 carátulas diferentes para cada hemisferio y otra para el ecuador terrestre.

Descarga

Acrobat Reader Descarga de Adobe Acrobat Reader.- Todos los archivos están en formato PDF. En caso de que el usuario no disponga de este programa, podrá econtrarlo aquí.

Mapa de estrellas.- Este es el mapa celeste o mapa de estrellas. Consta de dos caras, una para el cielo del hemisferio norte, y otra para el cielo del hemisferio sur.

Espaciadores.- Sirven para que el disco del mapa de estrellas pueda girar apropiadamente dentro de la caja que haremos con las carátulas.

Nota importante: Sólo es necesario descargarse el archivo de carátulas de una latitud concreta. Antes de decidir qué archivo vamos a descargarnos, debemos conocer la latitud de nuestro lugar de observación. Escogeremos aquella carátula diseñada para la latitud que más se aproxime a la nuestra.

Ecuador terrestre

Planisferio para latitud 0º (ecuador)

Hemisferio norte

Carátula del planisferio para latitud 10º norte

Carátula del planisferio para latitud 15º norte

Carátula del planisferio para latitud 20º norte

Carátula del planisferio para latitud 25 º norte

Carátula del planisferio para latitud 30 º norte

Carátula del planisferio para latitud 35 º norte

Carátula del planisferio para latitud 40 º norte

Carátula del planisferio para latitud 45 º norte

Carátula del planisferio para latitud 50º norte

Hemisferio sur

Carátula del planisferio para latitud 10º sur

Carátula del planisferio para latitud 15º sur

Carátula del planisferio para latitud 20º sur

Carátula del planisferio para latitud 25 º sur

Carátula del planisferio para latitud 30 º sur

Carátula del planisferio para latitud 35 º sur

Carátula del planisferio para latitud 40 º sur

Carátula del planisferio para latitud 45 º sur

Carátula del planisferio para latitud 50º sur

Instrucciones de montaje

Nota: No debe usarse pegamento con base de agua porque el papel se podría arrugar.

  1. Péguense los espaciadores sobre una cartulina. Córtense a continuación.
  2. Péguese el mapa celeste norte sobre una cartulina y a continuación córtese. Córtese el mapa celeste sur y péguese en la parte opuesta del mapa celeste norte. Ha de tenerse especial cuidado en que las marcas triangulares negras de los mapas norte y sur coincidan.
  3. Péguese la carátula norte en una cartulina y recórtese después. A continuación se recortarán los huecos que faciliten la lectura de la fecha y la hora.
  4. Péguese la carátula sur en otra cartulina y recórtese. Al igual que en la carátula norte, recortaremos las ventanas para la lectura de la fecha y la hora.Glue the southern cover plate on a cardboard and cut out the cover.
  5. Se hará un bocadillo con las carátulas y los espaciadores, que deberán unirse con pegamento.
  6. Después de que todo el pegamento se haya secado, se procederá a introducir el mapa celeste en la carátula, con el lado norte del mapa mirando hacia el lado norte de la carátula.
Planisferio de Toshimi Taki
Fotografía por Toshimi Taki

Versión divulgativa o educativa del planisferio

Dirigido a alumnos de primaria o a quienes empiezan a aprender astronomía. Este planisferio se entrega de forma totalmente gratuita a todos aquellos que asisten a las sesiones del planetario móvil de Educa Ciencia, en colegios, institutos, universidades o eventos de cualquier tipo.

Planisferio Educativo

 

Publicado en Astronomía, Observación y telescopios | Comments Off on Un planisferio para los dos hemisferios
January 12th, 2008

Los datos obtenidos por la misión de Astrometría de la Agencia Espacial Europea (ESA), que fueron cuestionados desde el principio, parecen haber sido ajustados por un astrónomo de la Universidad de Cambridge.

Fuente: Sky and Telescope, enero 2008 y otras.

La misión Hipparcos (1989-1993), de la ESA, dedicada a la astrometría, determinó, con una precisión sin precedentes, las distancias de 118000 estrellas. Estos datos fueron publicados en mayo de 1997, y ya desde el principio, muchos astrónomos y astrofísicos los cuestionaron. El problema más célebre pudo ser el de las Pléyades, un cúmulo de unas 3000 estrellas jóvenes, visible a simple vista y que añade una gran belleza a los cielos invernales del hemisferio norte de la Tierra.

El único método directo para determinar la distancia a las estrellas es la paralaje, que viene a ser la desviación en la posición aparente de los objetos por efecto de la diferente perspectiva desde dos lugares de observación diferentes. Este método es lógicamente menos preciso cuanto mayor es la distancia al objeto observado (en este caso las estrellas). Así, por la paralaje que determinó la misión Hipparcos, se estableció la distancia a las Pléyades en 390 años luz.

A algunos astrofísicos que estudian la evolución estelar (la vida de las estrellas), estos datos no les resultaron convincentes, puesto que por las características físicas de las estrellas de las Pléyades, ellos habían calculado una distancia de entre 420 y 440 años luz. El grupo de los escépticos se fue haciendo mayor con el paso del tiempo, y en 2004 un equipo del JPL que estudió la estrella Atlas de las Pléyades, estableció la distancia al cúmulo en, al menos, 414 años luz. Más tarde un grupo que estudiaba tres estrellas enanas en el cúmulo, mediante en Telescopio Espacial Hubble, obtuvo una distancia de al menos 429 años luz.

Floor van Leuwen, astrónomo de la Universidad de Cambridge, en el Reino Unido, ha trabajado durante 10 años sobre los datos de Hipparcos empleando nuevos equipos informáticos de mayor potencia que los de entonces. Gracias a esta tecnología ha podido tener en cuenta las minúsculas desviaciones producidas por 80 pequeños micro-impactos que sufrió el satélite Hipparcos durante su período de recolección de datos, así como los cambios (a una escala de micras) que sufrieron los equipos ópticos cuando el satélite entraba en la sombra de la Tierra o volvía a exponerse al calor del Sol mientras daba vueltas en torno a nuestro planeta.

Basándose en estos nuevos cálculos, de altísima precisión, van Leuwen obtiene una distancia para las Pléyades de 399±6 años luz.

Otras distancias estelares

Los nuevos resultados de van Leuwen arrojan estos datos de distancias en años luz para las siguientes estrellas y cúmulos abiertos:

Estrellas Distancia original
(años luz)
Distancia revisada
(años luz)
Próxima Centauri 4.22±0.01 4.23±0.01
Altair 16.77±0.08 16.73±0.05
Vega 25.3±0.1 25.0±0.1
Arcturus 36.7±0.3 36.7±0.2
Aldebarán 65.1±1.3 66.7±1.1
Mizar A 78.2±1.2 85.8±4.0
Alcor 81.2±1.2 81.7±0.3
Achernar 144±4 140±3
Espica 262±19 250±14
Canopus 313±17 309±17
Albiero B 376±30 400±13
Albiero A 386±28 434±20
Polaris 431±29 433±6
Saiph 720±29 650±30
Deneb 3200 (?) 1400±200
Cúmulos
Hiades (centro) 152±1
Coma Berenices (Mel 111) 294±6 283±3
Pláyades (en Tauro) 386±12 399±6
IC 2605 (en Carina) 474±14 491±7
Pesebre (M44) 610±50 590±20

¿Qué ocurrirá después?

Van Lewen reta ahora a los otros investigadores a revisar sus propios datos mejorándo sus métodos de estudio. La próxima misión de la ESA destinada a estudiar la astrometría es Gaia. Su lanzamiento está previsto para 2012 y espera obtener la posición exacta de miles de millones de estrellas de hasta la débil magnitud 20, con una precisión de al menos 0.00002 segundos de arco. Será hacia 2020, una vez analizados los datos de Gaia, cuando podremos determinar la astrometría más precisa de la Historia. Hasta entonces, los datos de van Lewen (que también participa en Gaia) seguirán siendo, probablemente, los mejores.

Páginas recomendadas:

La visión Cósmica de la ESA (castellano)
Página de Hipparcos, de la ESA (en inglés)
Página de Gaia, de la ESA (en inglés)
Hipparcos detecta estrellas rebeldes (castellano)

(c) 2008 Jorge A. Vázquez

Publicado en Astrometría, Astronomía | Comments Off on ¿A qué distancia están las estrellas?
January 7th, 2008

{mosimage}

Primera observación con el nuevo telescopio. La calidad de la óptica de los buenos refractores proporciona experiencias inolvidables, sobre todo si el sitio de observación es excepcional.

Alto Rey, Guadalajara
11 de septiembre de 2007

 

TAKAHASHI TSA-102N:


Diámetro=102 mm; Distancia focal=816mm; F=8

Oculares:
Oculares SuperPlössl Meade: 40mm (44º), 26mm (52º)
Oculares Plössl: 12,5mm (50º, genérico), 6,7 (50º, Meade).

Después de mucho dudar entre los TMB/APM y los William Optics, salgo por la calle de enmedio y me compro un Takahashi. La que considero escasa seguridad de obtener un buen juego de lentes con las otras dos marcas me hace decantarme por lo seguro.

El cielo azul, la falta de luna y la cercanía del otoño me empujan a irme a mi tienda favorita de Madrid a gastarme los ahorros. Lo decido comprar y estrenar ese mismo día. Y que mejor sitio que el Alto Rey, en la vecina provincia de Guadalajara, con su buena carretera que sube hasta los 1700 metros.

Álvaro y yo llegamos sobre las 22h (hora local). El cielo es, una vez más, espectacular, aunque la especulación urbanística y el progreso mal gestionado llena la llanura circundante con más luces cada vez que visito este pico. En verano empleo la NGC7000, la nebulosa de Norteamérica, como control del nivel de transparencia. La prueba es sencilla, si se ve a simple vista, es que hay una buena transparencia y oscuridad.

Después de cenarnos nuestros bocadillos, montamos el tubo sobre la EQ-5 de Álvaro, que sólo sirve (igual que mi CG-5) para sostener el telescopio sin que se caiga al suelo. La primera visión de la noche es el Doble Cúmulo de Perseo. Aún no tenía demasiada altura y sobresalía un poco por detrás de la montaña, pero esa visión del campo de estrellas, tan puntuales todas, nos hace pegar botes de alegría y gritar de la emoción. Es una visión transparente, nítida, de cielo negro azabache y estrellas brillantes como diamantes en la lejanía. El contraste de la imagen es brutal. Sencillamente la imagen es cósmica. Y con el ocular de 40mm las estrellas aparecen nítidas hasta zonas muy cercanas al borde. Con el ocular de 26mm no aprecio deformaciones significativas en los bordes de la imagen.

Debo reconocer que mis oculares no están aún a la altura de esta óptica, la de Takahashi. Por ello sé que las pruebas ópticas correctas las tendré que hacer más adelante, cuando me gaste unos poco euros más. ;-p

No obstante, sí que puedo decir que el triplete APO pasa la prueba de la aberración cromática a la perfección (a pesar de que tengo que repetirla despacio), puesto que no se notó la más mínima desviación de color cuando se enfocaban y desenfocaban manualmente las estrellas. Al desenfocar la imagen las estrellas se volvían simplemente grises, independientemente de que aumentara o disminuyera la distancia de enfoque.

Reporte de objetos observados
(No necesariamente observados en ese orden)

Estrellas dobles

Galaxias

Cúmulos globulares

Cúmulos abiertos

Nebulosas

Planetas

1. Estrellas dobles

Polaris.- 20x (ocular de 40mm). No aparece la compañera.
31x (ocular de 26mm). La compañera aparece, muy pequeña.
65x (ocular de 12,5 mm). La compañera aparece “marrón” o “gris”, supongo que por comparación con la principal, tan blanca y brillante como es.

Albireo.- De nuevo el mejor ocular es el de 12,5mm. El sistema aparece naranja y azul oscuro. Y vuelvo a tener la sensación de que los colores que da mi otro telescopio son muy parecidos a los de este (no tan limpios, eso sí). Me estoy refiriendo a un Maksutov-Cassegrain de 90mm, el primer ETX que sacó Meade hace 10 años, y que algún antiguo compañero de la Agrupa llamaba cariñosamente “el telescopio de Kent”.

Gamma Andromedae.- 20x. No se separa, sin embargo los discos de Airy sufren una curiosa deformación, apareciendo además partidos (e inmóviles, lo que delata el buen “seeing” de la noche).
31x.- La secundaria se aprecia a la perfección, y es cierto que este sistema recuerda a Albireo. Me propongo volver a observar ambas y compararlas.

2. Galaxias

M31 y otras galaxias
La Galaxia de Andrómeda podría estar devorando a sus dos galaxias satélites. Fotografía de Pedro L. Cuadrado.

M31, M32, M110 (Andrómeda).- 20x. Se supone que el campo es de 2º 09′. No lo he medido aún, sino que lo he calculado por la fórmula:

campo real = campo aparente del ocular / aumentos

Pues bien, ¡El disco de M31 no cabe en el campo! M32 aparece como un pequeño y brillante cúmulo globular. M110, más alejada de M31 es más grande, alargada y difusa que M32. El corte oscuro de M31 es también visible con gran nitidez y contraste.

M33 (Triángulo).- 20x. Esta galaxia es tan grande como difusa. Mientras escribo esto me arrepiento de no haber metido más aumentos. A pesar de ello, parecen adivinarse dos o tres zonas algo más brillantes en la zona de los brazos.

NGC891 (Andrómeda).- 20x. Casi ni se ve, por lo fina que es.
31x.- Se aprecia mucho mejor. El núcleo a veces se vislumbra como una estrella más. Me prometo volver a observarla con más aumentos.

NGC7331 (Pegaso).- 20x.- Muy difícil de encontrar, pero se ve. También volveré a este objeto con más aumentos, y con un mapa más apropiado que Uranometria, para buscar el Quinteto de Stephan.

M81, M82 (Osa Mayor).- 20x. Es la imagen de la noche. Observamos la pareja, cerca de 20 minutos, cómo se desliza entre las ramas de los árboles y plantas del Alto Rey. A M81, quizá por su escasa altura, no se le distinguían los brazos.
M82 es, con este telescopio, un auténtico “cigarrito Reig”, venenoso, nicotinoso y alquitranoso nombre para una galaxia tan bonita, pero bueno… el caso es que M82 es una línea blanca, brillante, recta, perfecta, que desprende una especia de penacho de humo. Aquí, a observar este par, sí que tengo que volver.

3. Cúmulos globulares

M13 (Hércules).- 20x. Imagen demasiado pequeña.
31x. Creo que siguen siendo necesarios más aumentos. Fue de los primeros objetos de la noche y aún estábamos por sacar el ocular de 12.5 mm.

M15 (Pegaso).- 31x. Digo lo mismo. Veremos qué pasa con una buena Barlow.

4. Cúmulos abiertos

Doble cúmulo de Perseo, y la estrella "El Rubí" en el centro
eta y chi Persei. Creo que es uno de los 5 objetos más impresionantes del cielo de hemisferio norte. Por el Takahashi la visión de cientos estrellas puntuales es, sencilamente, fantásica. Por cierto, que en contra de lo que se pensaba hasta 1976, estos dos cúmulos no están cerca entre sí, sino que es la perspectiva la que les hace parecer unidos. Feliz coincidencia la nuestra. Estamos en el lugar y en el momento apropiados para contemplar semejante conjunción galáctica. A medio camino entre ambos cúmulos se encuentra la estrella naranja “El Rubí” . Eta Persei es el de la derecha, el más rico.

Doble Cúmulo de Perseo.- 20x. Una de las imágenes más hermosas posibles en todo el cielo del hemisferio norte. Cientos de estrellas, de colores blancas y naranajas. En este cúmulo, ante una muestra de estrellas tan densa y variada, el Takahashi demuestra lo que vale. En los núcleos de ambos grupos hay una decena de estrellas pequeñas, que se clavan sobre el fondo negro como puntas de alfiler.
31x. Observo detenidamente los dos cúmulos y las estrellas diminutas se hacen perfectamente evidentes. Parece como si estuvieran escondidas y hubiera que destilar la luz con la óptica adecuada para poderlas descubrir.
65x. La imagen sigue siendo increíble. Estrellas puntuales, de colores blanco predominantemente y algunas naranja, por todas partes.
121x. No recuerdo haber empleado estos aumentos. Insisto en que la primera noche del telescopio ha sido para disfrutar, y no para llevar a cabo las pruebas exhaustivas.

M45 (Pléyades).- 20x. ¡¡CABEN ENTERAS EN EL CAMPO DEL OCULAR!! (Excepto aquella más retirada y septentrional). Por momentos llego a despistarme y a creer que estoy mirando por el buscador (que tiene también una óptica excepcional). Es otra de las imágenes de la noche. El ocular (?) refleja las estrellas más brillantes y aparentan estar rodeadas por una nebulosidad. Creo que ebo buscar información sobre este reflejo, por si fuera algo normal en los refractores apocromáticos.

M34 (Perseo).- 20x. Aparece accidentalmente mientras buscamos NGC891. Es un cúmulo bonito, que aparenta estar formado por dos capas, siendo la exterior menos densa, que contrasta con la zona interior, más rica en estrellas.

5. Nebulosas

Empezamos por las planetarias.

M57 (Anular de Lyra).- 20x. Pequeño disco gris. Cambio rápidamente de ocular.
31x.Se aprecia la forma con total nitidez. El hueco central también. Evidentemente no se puede trabajar con tan poco aumentos… lástima, es posible que hasta el año que viene no vuelva a verla…

M27 (Zorra).- 20x. Uno de los primeros objetos de la noche, junto a M57. Esta nebulosa nos demostró enseguida que con este telescopio hay que emplear oculares de menor focal.
31x. ¡¡INCREÍBLE!! AZUL Y VERDE. No son colores exagerados, sino que hay que prestar atención unos segundos para que el ojo los perciba adecuadamente. Álvaro y yo estamos seguros de los colores que hemos visto.
65x. Aunque me parezca mentira, la visión es más cómoda. Se siguen apreciando bien los colores, y además la estructura interna de la “Dumpbell” (me encanta esta palabra), el “Badajo de la Campana”, recordando mucho a las fotos de los libros. Una preciosidad, sin duda. No me extraña que los niños pequeños se emocionen cuando les dices que es una estrella que se ha muerto… que se ha inflado y ha hecho ¡pop!

M76 (Little Dumpbell).- 20x. ¡Y tan pequeña! Tardamos más de media hora en verla, quizá por el despiste de esperar algo más grande.
31x. Ahora sí que la vemos sin duda. La verdad es que se parece mucho a M27. Tiene dos lóbulos, siendo uno más luminoso que el otro.

Y terminamos con las difusas.

Guía de Comellas
Guía del Firmamento, de José Luis Comellas.

M42, M43 (Orión).- 20x. Lo siento por los más técnicos, pero la palabra es de nuevo esta: Espectacular, muy luminosa; se aprecian el “Trapecio”, “Sinus Magnus”, “Voluta”,”Proboscis”, “Ventris”, “Lacus”, el Pasillo Oscuro” (consulta la Guía de José Luis Comellas, ed. Rialp, para obtener más información sobre estos accidentes).
31x. Ahora son mucho más evidentes las estructuras en Voluta, “Proboscis I, II y III” y “Lacus”. El contraste negro de “Sinus Magnus” es como un corte al vacío. Jejeje, y esto se ve así cuando está saliendo Orión detrás de la montaña del Alto Rey. ¡Estoy impaciente por que llegue el invierno!

NGC7000, Nebulosa de Norteamérica
La Nebulosa de Norteamérica,NGC7000, al este (debajo) de Deneb, que es la estrella más brillante de la imagen. Se aprecia también parte de la constelación del Cisne. La Nebulosa de Norteamérica se puede emplear en verano para contrastar la transparencia y oscuridad del cielo nocturno.

NGC7000 (Neb. de Norteamérica, Cisne).- A simple vista. Como he dicho al principio, no hay problemas para verla.
20x. A pesar de que el campo es de 2º 09′, no basta para abarcarla. Sin e embargo debo decir que el campo de estrellas es… bueno, si vuelvo a decir que “es espectacular”, habrá quien me tire de la oreja. Se aprecian zonas más claras y más oscuras, sin duda pertenecientes a la Vía Láctea. Pero la nebulosa Norteamérica no se ve. Es necesario dar un barrido con un mapa con las estrellas más importantes para identificar la nebulosa en toda su extensión.

6. Planetas

Júpiter.- 31x y 65x. Los satélites puntuales y de distintos colores. Júpiter, desgraciadamente, ya estaba muy bajo… ¡pero es que teníamos que cenar antes de empzar a observar!

Marte.- 31x y 65x. Marte es un amasijo de aberraciones. Claro, está aún lejos de la Tierra y no hacía mucho que había salido.

Y aquí termina…

…el informe sobre la observación de la “primera luz” de este telescopio. Si no os habéis cansado de leer y habéis llegado hasta aquí, muchas gracias.

Gracias también a Álvaro Casado y a Pedro L. Cuadrado por las fotografías.

Modificado el ( viernes, 14 de marzo de 2008 )

Publicado en Astronomía, Observación y telescopios | Comments Off on Takahashi TSA-102n
  •  

     

  •  

     

  •  

     

     

     

  • Etiquetas

  •  

     

  • Archivo de publicaciones

  •  

     

  •  

     

  • Mapa del sitio

  • ?>