October 30th, 2014

Al igual que las otras palabras, los nombres de las estrellas están vivos: nacen y evolucionan. En algunos casos perduran nombres que surgen por el error de una o varias personas. Tal es el caso de la estrella Betelgeuse, en la constelación de Orión.

Los nombres de estrellas babilonios y asirios (partiendo de los sumerios), y de griegos (y estos en parte desde los egipcios), se sumaron a los de las tribus de beduinos del desierto de la Península Arábiga, para proporcionar a los científicos árabes los nombres de las estrellas que, en su gran mayoría, han perdurado hasta hoy.

Europa era, en la Edad Media, un lugar oscuro, dominado por la ignorancia. La cultura árabe de la época, mucho más avanzada, trajo a al-Āndālus y al sur de Italia una gran parte del saber de los antiguos, que se había perdido para Occidente siglos atrás. Entre los numerosos conocimientos que los europeos adquirimos de los árabes se encuentra, como sabemos, la astronomía, en la que los nombres de las estrellas jugaron un papel fundamental, gracias, sobre todo, a su aparición en el instrumento que todo astrónomo quería manejar: el astrolabio.

En el largo proceso que llevó a la recepción de la ciencia árabe, por parte de los copistas y traductores europeos, se produjeron innumerables errores de transcripción, que afectaron a menudo también a los nombres de las estrellas y, en ocasiones, incluso a su correspondencia con las estrellas del cielo. Como ejemplo de esto último podemos citar el caso de Meissa, en la cabeza de Orión, que era el nombre de otra estrella de Gemini. La denominación de la estrella β Tauri: Elnath, también deriva de otra confusión, porque en realidad era el de una estrella de Aries.

Yad al-Jauzāh

Este es un nombre de ascendencia árabe indígena (de las tribus beduinas) y quiere decir “La Mano de al-Jauzāh“. El asterismo así denominado, al-Jauzāh, era una figura femenina representada por las estrellas de lo que hoy conocemos como Orión. Su origen no es claro aunque Paul Kunitszch, uno de los mayores estudiosos de los nombres de las estrellas, cree que podría venir de “el medio”. En la cultura árabe al-Jauzāh se utilizaba también para denominar lo que en otras culturas es el signo zodiacal de Géminis, lo que trajo a la larga muchas más confusiones.

Betelgeuse

El nombre de Betelegeuse es una derivación de Yad al-Jauzāh obtenida de errores de transcripción. El primer error se produjo cuando un copista medieval confundió la Y árabe por una B, de lo que se derivó Bedalgeuze. El segundo error llegó en el Renacimiento cuando se identificó esta forma corrupta por “Bāt” (en realidad debió haber sido ibt), “la axila”.

En cualquier caso Betelegeuse nunca podría ser la axila del gigante, sino, en todo caso, la axila de al-Jauzāh, aquella figura femenina de la que hablábamos.

Bibiografía

Kunitzsch, P., Smart, T., 2006, Dictionary of Modern Star Names, Cambridge, USA: Sky Publishing.

Publicado en Astronomía, nombres de estrellas | Comments Off on El equívoco nombre de Betelgeuse
February 14th, 2013

Edmond Halley pudo haber estado cerca de lograr medir las distancias a las estrellas Sirio y Procyon en el año 1718.

Halley midió el movimiento de algunas estrellas en el cielo a lo largo de 1800 años, empleando para ello las mediciones astrométricas de Hyparco, Ptolomeo y Timocares. Según sus cálcylos, Sirio y Procyon se habían desplazado un total de medio grado de arco, durante este lapso de tiempo, lo que equivaldría a un desplazamiento de un segundo de arco al año. Dedujo, acertadamente, que estas estrellas debían de estar entre las más cercanas, dado su gran brillo.

Según el astrónomo soviético B. A. Vorontsov-Velyaminov (1904-1994),  si a Halley se le hubiera ocurrido comparar las medidas de sus movimientos angulares con velocidades radiales, habría podido deducir las distancias a estas estrellas. Como, evidentemente, en su época no se conocían los movimientos propios de las estrellas, podría haber tomado como velocidad típica la de la Tierra alrededor del Sol, ya conocida entonces (unos 30 km/ segundo). De este modo, y partiendo de un valor de 6 unidades astronómicas por año para un desplazamiento angular de 1 segundo de arco, habría obtenido una distancia de 6 parsecs a estas estrellas, un resultado comparable al dato actual de 2,6 parsecs a Sirio y 3,5 parsecs a Procyon.

No habrían sido unos resultados demasiado malos, sobre todo teniendo en cuenta que, 120 años después, y ya empleando la técnica de la paralaje, para la estrella Groombridge 1830, que se encuentra a 10 parsecs, O. Struve estimó 30 parsecs mientras que M. Wichmann midió 5,5 parsecs. Aunque tampoco deja de ser cierto que el valor obtenido para las estrellas Arturo y Aldebarán (también estudiadas por Halley), habría sido significativamente menos acertado. Pero Vorontsov-Velyaminov no dejaba de considerar que el método habría sido bueno.

Publicado en Astrometría | Comments Off on E. Halley y las distancias de Sirio y Procyon
December 26th, 2011

laserEl eje de rotación de la Tierra no es fijo. Sufre variaciones más o menos importantes, muy complicadas de medir. Si bien el astrónomo puede estar familiarizado con el concepto de precesión, existen otras variaciones, como el bamboleo anual y el bamboleo de Chandler. Hasta ahora sólo habían podido medirse mediante complejas redes intercontinentales de radiotelescopios pero, por fin, ha sido posible la observación de estos bamboleos dentro de un laboratorio.

 

Traducido y adaptado de Physorg (22 de diciembre de 2011) y otras fuentes.

 

Un grupo con investigadores de la Universidad Técnica de Munich (TUM), Alemania, han sido los primeros en trazar los cambios del eje de rotación midiéndolo en un laboratorio. Para llevarlo a cabo construyeron el anillo láser más estable del mundo. Hasta ahora, los científicos sólo podían medir las variaciones del eje de la Tierra rastreando objetos fijos en el espacio. Capturar estas variaciones es crucial para los sistemas de navegación.

La Tierra se tambalea

Como una peonza cuando la tocan en mitad del giro, el eje de rotación fluctúa en el espacio. Esto se debe, en parte, a la gravedad de la Luna y del Sol. Al mismo tiempo, el eje de la Tierra cambia constantemente en relación con la superficie de la Tierra. Por un lado está debido a las variaciones en la presión atmosférica, y a la carga de los océanos y del viento. Estos elementos se combinan para producir un movimiento del polo que se conoce como efecto de bamboleo de Chandler, por el científico que lo descubrió, y que tiene un periodo de unos 435 días. Por otro lado, un fenómeno conocido como bamboleo anuo provoca que el eje de rotación se mueva en un periodo de un año, debido a la forma elíptica de la órbita de la Tierra en torno al Sol. Estos dos efectos provocan una migración irregular del eje de la Tierra, con un radio de hasta seis metros.

La observación del bamboleo de la Tierra

La captura de estos movimientos resulta crucial para la creación de un  sistema de coordenadas efectivo que se pueda emplear para los sistemas de navegación o para proyectar trayectorias en viajes espaciales. “La localización de un punto con precisión centimétrica es un proceso extremadamente dinámico para el posicionamiento global, después de todo, en nuestra latitud, nos estamos moviendo hacia el este a unos 350 metros por segundo,” explica el profesor Karl Ulrich Schreiber, que dirigió el proyecto en la Sección de Investigación de Geodesia por Satélite de la Universidad Técnica de Munich. La orientación relativa del eje de la Tierra con respecto al espacio y su velocidad de rotación se miden actualmente en un complicado proceso que involucra a 30 radiotelescopios en todo el globo (Interferometría de Base Muy Ancha, VLBI). Cada lunes y cada jueves, de ocho a doce radiotelescopios miden, alternativamente, la dirección entre la Tierra y unos cuásares específicos. Los científicos presumen que estos núcleos galácticos no cambian su posición y que, por lo tanto, se pueden emplear como referencia. El Observatorio Geodésico de Wettzell también se integra en este sistema. Este observatorio es operado por la TUM y por la Agencia Federal Alemana de Cartografía (BKG).

A mediados de los 90, científicos de la TUM y del BKG unieron sus fuerzas con investigadores de la Universidad de Canterbury en Nueva Zelanda, para desarrollar un método más simple que fuera capaz de seguir continuamente el bamboleo de Chandler. “También queríamos desarrollar una alternativa que nos permitiera eliminar los errores sistemáticos”, continúa Schreiber. “Después de todo, había siempre una posibilidad de que los puntos de referencia del espacio no fueran totalmente estacionarios.” Los científicos tenían la idea de construir un anillo láser similar a los que emplean en los sistemas de guiado de los aviones, aunque millones de veces más preciso. “En ese momento casi nos daba la risa,” reconoce Schreiber.

El giróscopo de anillo láser

El giróscopo de anillo láser utiliza la luz para medir la rotación angular. Cada giróscopo tiene una forma triangular y en él se encuentra un láser de helio-neón que produce dos haces de láser, cada uno viajando en sentidos opuestos, uno a favor de la rotación, y el otro en contra. La producción de los haces de luz ocurre en la región de descarga del gas, mediante la ionización de de una mezcla de gas de helio y de neón a baja presión con alto voltaje, que produce una descarga brillante. Esa luz de láser es reflejada alrededor del triángulo por espejos situados en las esquinas para producir haces de luz que vayan a favor y en contra de la rotación.

anillo laser de wetzel
Ajustes en el anillo láser de Wetzell.
Fuente: © Geodätische Observatorium Wettzell

La longitud del camino es revisada y ajustada cuidadosamente de manera que sea un múltiplo de la longitud de onda del láser. Cuando el giróscopo láser está en reposo, las frecuencias de los dos haces que viajan en sentidos opuestos coinciden. Cuando el giróscopo rota en torno a un eje perpendicular al plano de la luz láser, se crea una diferencia de frecuencias entre los dos haces, porque la velocidad de la luz es constante. Un haz de láser tendrá que recorrer una distancia mayor que el otro. Una pequeña cantidad de la luz de los haces de láser pasa a través de uno de los espejos (menos del 0,2%). Los haces se combinan por frecuencias ópticas para producir un patrón de interferencia. Este fenómeno se conoce como efecto Sagnac , por lo que este sistema recibe el nombre de interferómentro de Sagnac (Malacara 2004, pp. 234 ss.).

El anillo láser de Wetzell

Los trabajos para la construcción del anillo láser más estable del mundo comenzaron a finales de los 90 en el observatorio Wetzell. El sistema consiste en una instalación rotatoria que incorpora dos haces de láser que se lanzan en sentidos opuestos y que viajan alrededor de un camino cuadrado con espejos en las esquinas, con lo que el haz forman un camino cerrado (de ahí el nombre de anillo láser). Cuando el sistema rota, la luz que va favor de la rotación tiene que recorrer más camino que la que va en contra de la rotación. Dado que la velocidad de la luz es constante, los haces ajustan sus longitudes de onda, provocando que la frecuencia óptica cambie. Los científicos pueden usar esta diferencia para calcular la velocidad de rotación que el instrumento experimenta. En Wetzell es la Tierra la que gira, no el anillo láser. Para asegurarse de que la única influencia de los haces de láser es la rotación terrestre, la instalación, que mide cuatro metros por cuatro metros, se ancla a un pilar de cemento, que se prolonga seis metros en el interior de la roca sólida, en la corteza terrestre.

La rotación terrestre afecta a la luz de modos diversos, dependiendo de la localización del láser. “Si estuviéramos en uno de los polos, los ejes de la Tierra y del láser giratorio se encontrarían en completa sincronía y su relación de velocidades daría un resultado de 1:1,” detalla Schreiber (por ese motivo los datos no servirían para apreciar los cambios del eje). “En el ecuador, sin embargo, el haz de luz no percibiría nunca que la Tierra está girando,” (aquí el eje del anillo láser es perpendicular al eje de rotación terrestre. En esto el sistema tiene similitudes con la interferometría de muy larga base de VLBI). Por lo tanto, los científicos deben tener en cuenta que el láser de Wetzell se encuentra a una latitud de 49 grados. Cualquier cambio en el eje de rotación de la Tierra se refleja en el indicador de velocidad rotacional. Así, el comportamiento de la luz revela el cambio en el eje de la Tierra.

La construcción e instalación del anillo láser

 

construccion de un anillo laser
Montaje similar al del artículo. La imagen del láser
y esta proceden de la Universidad de Pisa.

“El principio es simple”, añade Schreiber. “El mayor reto fue asegurarse de que el láser permanecía lo bastante estable como para poder medir la débil señal geofísica sin interferencias de ningún tipo, especialmente a lo largo de un período de varios meses.” En otras palabras, los científicos tenían que eliminar cualquier cambio en la frecuencia que no procediera de la rotación de la Tierra. Entre ellos se encuentran los factores ambientales debidos a los cambios de presión atmosférica y temperatura. Para conseguirlo, confían principalmente en una placa base de cristal cerámico y en una cámara presurizada. Los investigadores montaron el anillo láser sobre una placa base de nueve toneladas de Zerodur, material que también se empleó para los soportes de los haces de láser (y que se utiliza para construir los espejos de algunos de los mayores telescopios del mundo). Escogieron el Zerodur por su extremada resistencia a los cambios de temperatura. La instalación se alberga en una cabina presurizada que registra los cambios en la presión atmosférica y la temperatura (12 grados) y los compensa automáticamente. Los científicos enclavaron el laboratorio a a cinco metros de profundidad para mantener al mínimo cualquier tipo de de influencias ambientales. Está aislado por arriba con capas de Styrodur y arcilla, y cubierto por un túmulo de tierra de cuatro metros de alto. Los científicos tienen que atravesar un túnel de veinte metros con cinco puertas de almacenaje de frío y un cierre, antes de llegar al láser.

Bajo estas condiciones, los investigadores han alcanzado el éxito, al corroborar las medidas del bamboleo de Chandler y del bamboleo anual con los datos tomados por los radiotelescopios. Ahora quieren que el aparato alcance una mayor precisión, permitiéndoles la determinación de los cambios que experimente el eje de rotación en un sólo día. Los científicos también planean hacer que el anillo láser sea capaz de operar de forma continuada de modo que pueda funcionar por un período de años sin ningún tipo de desviaciones. “En palabras simples”, concluye Schreiber, “en el futuro, queremos ser capaces de bajar a la base y averiguar a qué velocidad está girando exactamente la Tierra en este preciso instante.”

Fuentes consultadas

First ever direct measurement of the Earth’s rotation
Physorg

Pinpointing the orientation of the Earth’s axis using the world’s most stable ring laser
Universidad Técnica de Munich

Development of a Ring Laser Gyro: Active Stabillization and Sensitivity Anallysis
Marco Pizzocaro (Universidad de Pisa)

Ring Laser Gyro
Kostas Makris

Using Ring Laser Systems to Measure Gravitomagnetic Effect on Earth
Matteo Luca Ruggiero (Politénico de Turín)

El efecto Sagnac y sus consecuencias
Manuel Torregrosa, Relatividad.org

Óptica Básica
Daniel Malacara. 2ª edición, Fondo de Cultura Económica, México 2004

Consulta recomendada:

How to Detect the Chandler and the Annual Wobble of the Earth with a Large Ring Laser Gyroscope
K. U. Schreiber et al. (Physical Review)


Publicado en Astronomía, Astronomía de posición | Comments Off on Primeras mediciones directas del eje de la Tierra
January 29th, 2010

Este año 2010, empieza con un gran evento astronómico: Marte tendrá un importante brillo y estará visible toda la noche con un intenso color anaranjado. Podéis localizar fácilmente a Marte en la constelación de Cancer, entre las constelaciones de Leo y Géminis y a la mitad de distancia entre la estrella de primera magnitud Polux de Géminis y Regulus de Leo.

Por el Grupo Astronómico Silos

27 Ene, 2010

Máxima aproximación de Marte y la Tierra (0,664 UA = 99,33 millones de kilómetros). El diámetro aparente de Marte es 14,105".

29 Ene, 2010

Marte en oposición con la Tierra, la Tierra en conjunción inferior con Marte. El brillo aparente de Marte alcanza magnitud -1,28 en la constelación de Cáncer. Esta oposición tendrá lugar durante la primavera en el norte de Marte y el otoño en el sur, así que principalmente  será observable el hemisferio norte.

Marte alcanza su oposición cada 2 años, pero no todas las oposiciones son iguales. Esto es debido a que algunas oposiciones ocurren cuando Marte esta más alejado o cercano a la Tierra. La última oposición con un buen acercamiento de Marte ocurrió en agosto del 2003, aquí brilló con mg -2.9 y tuvo un diámetro angular aparente de 25 segs. de arco. Aunque este mes de enero tiene su oposición, Marte continuará con muy buen brillo por algunos meses más.

El mejor momento para observarlo será cuando esté cerca del cenit, al rededor de la media noche, momento en que hay menos atmósfera entre la luz de Marte y nuestro telescopio. La presencia de la Luna casi llena (30 de Enero) en la misma constelación de Cancer, junto a M44 (cúmulo del Pesebre), borrará el fondo de estrellas.

 

 

Publicado en Astronomía, Marte, Observación y telescopios, Sistema solar | Comments Off on Marte próximo a la Tierra (2010)
August 31st, 2009

Diez pasos para preparar tu telescopio

Unas sencillas instrucciones, adaptadas del propio manual de la CG-5 de Celestron, que esperamos que sean de utilidad. Aunque lo cierto es que cada vez se ven más monturas que emplean estrellas de referencia para la puesta en estación, es mucho más didáctico comprender este sistema, proceso que puede enseñarnos mucha astronomía de posición. Y en contra de lo que se pueda pensar, este proceso de puesta en estación es rápido y sencillo.

montura ecuatorial
(Figura 1)
  • Letra A. Los mandos de altura o, en este caso, también de latitud.
  • Letra B. Los mandos de acimut, es decir, de movimiento izquierda-derecha.

 

Los cinco primeros pasos

1. Intentemos que al montar el equipo el eje polar de la montura apunte al Norte con la mayor precisión posible. Siempre montamos los contrapesos antes que el telescopio para evitar desagradables accidentes.

2. Nivelaremos la montura del telescopio por medio del nivel de burbuja, que normalmente se encuentra en el trípode.

3. Inclinaremos el eje polar de la montura hasta la latitud del lugar mediante los mandos de altura. La latitud vendrá indicada en la montura en la rueda de latitud, muy bien visible en la figura 1, letra A y señalizada por una flechita en el cuerpo de la montura. A veces la flechita indicativa de la latitud puede estar algo oculta. Suele ser un triángulo.

4. Giraremos el eje de la declinación de la montura, hasta que el objetivo del buscador de la polar quede visible. Se trata de abrir la entrada de luz del eje polar de la montura.

5. Nos aseguramos de que se puede ver la polar a través del buscador, nos fijaremos en la posición del retículo de la polar. Giraremos después el eje de ascensión recta de la montura hasta que el retículo quede tal como indica la figura 2, es decir, con el agujero de la polar abajo. Esto se debe a que tenemos que ajustar el eje polar partiendo de un instante de culminación superior (paso por el meridiano) de la estrella polar conocido, que más adelante veremos. Además, como el buscador de la polar es un simple anteojo, invierte Norte-Sur y Este-Oeste. Por eso la posición el agujero de la polar queda abajo, a pesar de que buscamos emplear el instante de la culminación superior de la estrella polar.

montura ecuatorial
(Figura 2)

La culminación superior de la estrella polar

Antes de continuar debemos comprender el significado de este concepto, que es en realidad mucho más sencillo de lo que parece. La figura 3 nos ayuda con ello.

Debido a la rotación de la Tierra, todos los astros aparentan desplazarse de este a oeste, y la estrella polar también. Como sabemos, la estrella polar no está exactamente en el polo norte celeste, sino que dista de él aproximadamente un grado de arco. En este movimiento diurno, los astros cruzan el meridiano del lugar, produciéndose el fenómeno conocido como “culminación”.

Meridianos celestes son aquellos círculos máximos que rodean a la esfera celeste y que pasan por los dos polos celestes. De todos estos meridianos, y siempre para nuestra localización sobre la Tierra, sólo uno de ellos recibe el nombre de meridiano del lugar: el meridiano celeste que pasa por nuestro cenit, punto de corte de la vertical con la bóveda celeste, esto es, el punto más alto de la bóveda celeste que se encuentra sobre nuestras cabezas.

La culminación superior de la estrella polar es la que se produce en el instante en que cruza el meridiano del lugar, (que siempre está fijo), entre el polo norte celeste y el punto sur del horizonte. En la figura 3 podemos observar cómo la estrella polar está dirigiéndose hacia la culminación superior, mientras toda la esfera celeste parece girar, por la rotación de la Tierra, siguiendo la dirección de las líneas rojas.

estrella polar
(Figura 3)

 

Finalización del proceso

6. Observaremos la figura 4. Hemos señalado una zona “cero”, que nace justamente del número “0” del panel llamado “R.A.”. Es la zona en la que leeremos y modificaremos las coordenadas del buscador de la montura. La zona “cero” está marcada por un rectángulo rojo.

ruedas de fechas y de ascension recta
(Figura 4)
  • Letra A. El tornillo de cierre de la rueda de horas. Para que se fije correctamente, en la montura CG-5 debe entrar en un agujero que tiene, de fábrica, la propia rueda de horas.
  • Letra B. Se señala, con un círculo amarillo, el punto de origen de la zona “cero”.
  • Letra C. La rueda de horas (o de ascensión recta). En el hemisferio norte de la Tierra se utiliza la escala Superior  de la rueda de horas.
  • Letra D. La rueda de fechas.

7. Giraremos la rueda de horas (letra C) hasta que las “0” horas de la escala superior coincidan con el “0” del panel “R.A.” Hagámoslo todo dentro del círculo amarillo de la  figura 2. En ese momento ajustaremos el tornillo de cierre de la rueda de horas, haciéndolo entrar en el agujero que la propia rueda de horas tiene, de fábrica, cuidando de que todo encaje como hemos dicho.

8. Giraremos la rueda de fechas (letra D) hasta que el 1 de noviembre coincida con la marca de las “0” horas de la escala superior de la rueda de horas. La estrella polar culmina a la 0 a.m. T.U. todos los días 1 de octubre, en Greenwich.

9. Observaremos la hora y fecha en el reloj y calcularemos el tiempo universal (T.U.),  restando 1 hora en horario de invierno y 2 horas en horario de verano. Fija la rueda de horas mediante el tornillo de cierre y gira el eje ascensión recta de la montura hasta que la fecha coincida con la hora T.U.

10.
Observaremos a través del buscador la posición de la estrella polar con respecto al retículo. Mediante l os mandos de altura y acimut (letras A y B respectivamente de la figura 1) deberás ajustar la montura para que la estrella polar esté dentro de su agujero del retículo (Figura 5).

 

montura ecuatorial
(Figura 5)
buscador de la polar de astromist
(Figura 6) Un asistente informático (Astromist ) que nos indica
la posición de la estrella polar para una localidad y un momento dados.

Para ampliar conocimientossobre astronomía de posición

Sección de divulgación en Educa Ciencia (www.educa-ciencia.es)

Publicado en Astronomía, Astronomía de posición, Observación y telescopios | Comments Off on Cómo poner en estación una montura ecuatorial alemana
July 25th, 2009

Pequeño parte de observación. 25 de julio de 2009

Dibujo de Júpiter con su ImpactoLugar de observación: “Área 50”, de la Cruz del Norte, en Venturada, Madrid.
Sin viento y sin apenas turbulencia. Júpiter  se encontraba a unos 30º sobre el horizonte.
¡Gracias a los compañeros de afición de la Cruz del Norte!

Telescopio Takahashi TSA 102, 121x, con ocular Plössl 3000 series de Meade, 6,7 mm  y prisma cenital Meade Series 5000 para mejorar el contraste.

La zona del impacto era ovalada, se apreciaba de un color negro intenso y estaba rodeada de una zona, también ovalada y concéntrica, pero de tonalidad más clara. El conjunto parecía ser más pequeño que la Gran Mancha Roja.

Se trata de un impacto descubierto por Anthony Wesley, un aficionado australiano, el día 19 de julio de este año. En estas fechas se cumplen 15 años de que los fragmentos del Schoemaker-Levy 9 chocaran también contra Júpiter.

 

Más información:

Impact Mark on Jupiter, 19th July 2009 Página del descubridor, el astrónomo aficionado australiano Anthony Wesley.

El descubrimiento lo hizo con su Newton artesanal de 36 centímetros, sobre montura Losmandy Titan y Barlow Televue 5x (forzada a 7,7x). Cámara Point Grey Research Dragonfly2 monocromática y filtros Astrodon I-Series RGB para la composición a color. Para la obtención de esta espectacular imagen final empleó la técnica del apilado, con Registax y otros programas, en su ordenador.

Nuevas imágenes de la NASA demuestran que un objeto ha golpeado a Júpiter (En AstroSETI)

Surprise Collision on Jupiter Captured by Gemini Telescope (Imágen en infrarrojo tomada el 22 de julio por el Gemini Observatory)

Publicado en Júpiter, Observación y telescopios, Sistema solar | Comments Off on Observación del impacto sobre Júpiter
July 22nd, 2009

Emocionados, cantando a San Martín para que se fueran las nubes, los miembros de la Asociación Shelios han logrado observar y retransmitir por Internet, para todo el mundo, las imágenes del eclipse total de Sol que en estos momentos aún sigue aconteciendo en China y en el Océano Pacífico. (Difundido por ElSegundoLuz en la madrugada española)

(Nuevos datos añadidos la mañana siguiente debajo de las fotografías)

En España, antes de las 4.00 am

Reproducimos una secuencia de capturas de la retransimisión que se ha producido desde China, del eclipse total de Sol ocurrido hoy mismo, 22 de julio de 2009, en China. Ha sido (o está siendo) el eclipse más largo del siglo.

La emoción ha llegado a ser, como siempre ocurre en estos casos, “brutal”, en palabras de los propios integrantes de la expedición, provocando incluso los lloros de muchos de ellos. Tanto ha sido así que incluso el propio comentador ha cometido varios errores, llevado sin duda por el exceso de adrenalina, de la que seguro rebosaba, como a toda persona que consigue llegar a situarse debajo de la sombra de la Luna le ocurre. Se trata de un espectáculo de tal magnitud que nadie que no lo haya vivido puede llegar ni siquiera a aproximarse a saber lo que se siente, le guste la astronomía o no.

Queremos dar la enhorabuena a la Asociación Shelios por el éxito obtenido, fruto sin duda de su gran esfuerzo.

shelios en china

 

Web de la Asociación Shelios

Web donde se ha retransmitido el eclipse

Adenda (a la mañana siguiente, en España):

La retransmisión, después de varias pruebas que se sucedieron a lo largo de lo que era la madrugada española, comenzó exactamente a las 3.00 hora peninsular, tal como se había previsto y anunciado. Se echaron de menos, en la emisión del video, imágenes con filtro que permitieran contemplar la evolución del eclipse.

A pesar de la fina capa de nubes que provocó el nerviosismo de los integrantes de la expedición, se ha podido observar una hermosa corona, prácticamente simétrica, por el mínimo de actividad solar del que el Sol apenas está empezando a salir, además de las perlas de Baily y los preciosos e impresionantes anillos de diamante, visibles siempre en los momentos del segundo y tercer contactos, esto es, en los precisos momentos en los que comienza y termina la fase de totalidad del eclipse.

Según los datos del Anuario del Observatorio Astronómico Nacional ,  la duración de la fase de totalidad, tal como se debió de observar en el punto de mayor duración de la misma, fue de 6 minutos y 39 segundos. El lugar de mayor duración del eclipse fue en la latitud de +24º, en un punto del Océano Pacífico al este de la isla japonesa de Iwo Jima. En Shangai la duración fue de cinco minutos, cero segundos; por elllo, la expedición Shelios, que se encontraba en Huaying, al oeste de dicha ciudad, tuvo que observar una totalidad de casi cinco minutos (como parece cronometrarse en la retransmisión en diferido), lo que es bastante notable para un fenómeno de este tipo.

La anchura de la sombra de la Luna sobre la Tierra fue de 258 km.

Web donde ver en diferido un resumen de la retransmisión

Imágenes de satélite, de la evolución de la sombra de la Luna de este eclipse, sobre la superficie terrestre. (Grupo de correo de la Agrupación Astronómica de Madrid).

 

Publicado en Comunicación de la ciencia, eclipses | Comments Off on La Asociación Shelios observa el eclipse total de China y lo retransmite por Internet
January 7th, 2009

Celso Frade Jiménez, Astrofísico por la UCM y profesor del Colegio Zazuar de Madrid , propone una actividad astronómica muy interesante: emplear un telescopio robótico para tomar fotografías de los cuerpos celestes. Cualquier excusa es buena para promocionar un poco más el gran acontecimiento: la comunidad astronómica mundial está celebrando este 2009 como el Año Internacional de la Astronomía.

¡Empecemos por los colegios!

“2009 – Año Internacional de la Astronomía”

Como muchos lectores ya sabrán, este año 2009 fue declarado el 27 de Octubre de 2006 como el “Año Internacional de la Astronomía” por la Unión Astronómica Internacional (UAI) y por la UNESCO.

Son muchísimas las actividades que se pueden realizar este año para acercarse a este fascinante mundo de la Astronomía o para inculcar en nuestros hijos un cierto interés por la Ciencia, tarea nada sencilla hoy en día. No deberíamos olvidar que la Astronomía es la decana de las Ciencias pues acompaña al ser humano desde que empezó a tener conciencia de su existencia y se preguntó acerca de la naturaleza de los puntos brillantes que día tras día observaba en los cielos. Dichas preguntas motivaron el desarrollo de la cultura y aún hoy nos empuja a seguir escudriñando los secretos de la Naturaleza. Además, hoy en día cuenta con una ventaja frente a otras ciencias, nos muestra imágenes fascinantes que sin necesidad de conocer complejas fórmulas ni leyes físicas, nos permiten contemplar la inmensidad y complejidad del Cosmos.

Puede que muchos crean que la forma de participar se limitará a asistir a conferencias, leer un libro o visitar museos de ciencia. La verdad es que todas las propuestas anteriores son atractivas pero para los que sean un poquito más ambiciosos y aventureros les voy a proponer otra que complementa a las anteriores y que seguro les tienta un poquito más.

¿A quién no le gustaría disponer de tiempo, dinero y un lugar adecuado para poder tener uno de esos estupendos telescopios que alguna vez vemos en folletos, libros, televisión?, ¿Quién no querría realizar con ellos alguna fotografía como las que podemos ver en alguno de los atlas de Astronomía?, ¿Qué cara pondrían los más pequeños si realizamos con ellos una actividad como ésta?

Pues he aquí un estupendo ejemplo:

 

La Gran Galaxia de Andrómeda, M31, por Celso Frade
Imagen de la Galaxia de Andrómeda obtenida y procesada por Celso Frade Jiménez con el
Telescopio Robótico de Bradford.

Preciosa, ¿no es verdad? Pues bien, repartidos por toda la Tierra, hay incontables telescopios apuntando al cielo constantemente pero algunas decenas, permiten a determinados usuarios manejarlos u obtener imágenes del cielo con ellos simplemente disponiendo de una conexión a Internet y sentados cómodamente en nuestras casas sin necesidad de disponer de telescopio, ni de ser expertos en la materia, ni pasar frío durante las observaciones. Uno de los pioneros en lo que a telescopios robóticos se refiere es el Telescopio Robótico de Bradford (propiedad de la Universidad de Bradford). Situado en la isla de Tenerife, permite a aficionados, profesores y estudiantes del Reino Unido, enviarle las propuestas de observación y recibir las imágenes obtenidas para poder después tratarlas. Como el telescopio está situado en territorio español, también nosotros podemos acceder a él de forma gratuita y muy sencilla sin más que registrarnos en su web (http://www.telescope.org).

El único pequeño inconveniente es que la página y documentación está en inglés pero hay muchos usuarios registrados castellanohablantes que utilizan el telescopio y ponen a disposición de los usuarios las imágenes que obtienen.
Eso sí, no dejen de observar el cielo con sus propios ojos, pese a las preciosas imágenes que podemos obtener con los fantásticos equipos modernos, nada es comparable a la sensación de “sobrevolar” la Luna a través de un telescopio o de ver esos diminutos anillos de Saturno. Merece la pena.

Para saber más:

AIA / IYA 2009: Año internacional de la Astronomía
Web de Celso Frade: http://celsofradejimenez.wikispaces.com/imagenesBRT

Celso Frade Jiménez
Astrofísico por la U.C.M. y profesor del Colegio Zazuar

Publicado en Astronomía, Observación y telescopios | Comments Off on Telescopios robóticos para el “Año Internacional de la Astronomía” 2009
December 24th, 2008

Los astrónomos profesionales piden ayuda a los aficionados una vez más. Esta vez, para localizar ecos de supernovas que se apagaron hace cientos o miles de años y así poderlas estudiar ahora. Mediante los equipos de que disponen hoy en día muchos astrofotógrafos, esto es posible.

Reproducimos un pequeño resumen del artículo explicativo de Doug Wells complementado por otras informaciones relacionadas.

Fuente: How to Hunt for Supernova Fossils in the Milky Way, por Doug Wells, Sky and Telescope, junio de 2008 y otras fuentes diversas.

La teoría

A pesar de que nuestra galaxia está repleta de restos de explosiones de supernova, sólo han sido registradas directamente 5 supernovas galácticas (véase la tabla inferior) y todas hace más de 400 años. Todo lo que sabemos de las supernovas de nuestra galaxia que han sido visibles a simple vista procede de las descripciones de los registros históricos. Podríamos aprender mucho más sobre ellas si pudiéramos medir sus curvas de luz (siguiendo las subidas y bajadas de su brillo) y examinar sus espectros, que son reflejados por las nebulosas al igual que la Luna refleja el espectro del Sol. En la tabla adjunta se reproducen los datos de las supernovas históricas de nuestra galaxia. El estallido que originó la fuente Cas A ocurrió probablemente a finales del siglo XVII.

Se estima que se producen, aproximadamente, dos supernovas en nuestra galaxia cada siglo, de modo que en los últimos 400 años se han debido de producir unos 8 estallidos que habrán quedado, probablemente, ocultos por el velo de gas y polvo que constituye nuestra propia Vía Láctea. De modo que, si se quieren encontrar ecos de supernovas, no se debe buscar sólamente en las inmediaciones de los remanentes de supernova conocidos, sino también en las cercanías del plano de la Vía Láctea (véase más abajo).

Ecos de luz de una supernova
Esquema simplificado de cómo una nebulosa puede reflejar la luz de una explosión de
supernova y producir dos ecos de luz en dos momentos distintos. La fuente de luz y
la Tierra siempre se representan en los focos de una elipse, en estos casos.

 

Ecos de luz

A un eco de luz le lleva más tiempo llegar hasta nosotros que a la luz que viene directamente de la supernova, puesto que el eco lleva un camino más largo. Aunque la luz directa llegara a nosotros hace cientos de años, podemos aún ser capaces de registrar el eco retrasado. Lo único que necesitamos es una nube de polvo interestelar que refleje la luz de la supernova hacia La Tierra de modo que nos llegue mientras tengamos nuestros telescopios apuntando hacia ella.

Dos célebres astrónomos y astrofísicos del siglo XX, Jan Oort y Fritz Zwicky más tarde, fueron los primeros en darse cuenta de las posibilidades de esta nueva área de estudio, aunque fueron Eugène M. Antoniadi y Cammile Flammarion los primeros en observar un fenómeno de este tipo, eso sí, en los ecos de luz de una nova, no de una supernova. Fue en la célebre Nova Persei de 1901.

Nova Persei 1901
Observaciones de los ecos de luz (especialmente donde indica la flecha roja)
de la Nova Persei 1901por Antoniadi, con una separación temporal de 2 meses.
La cuadrícula representa separaciones de 2 minutos de arco.

La técnica

Se necesita tomar imágenes profundas de grandes áreas del cielo con los aumentos suficientes y con una separación en el tiempo de unos meses, para sustraer después las imágenes más recientes de las más antiguas, y buscar retazos de luz que se hayan movido entre ambas exposiciones.

El equipo

El telescopio

Dado el tipo de imágenes que han de tomarse, son necesarios telescopios con la mayor distancia focal (F) posible y además de la menor relación focal que se pueda (f).

La CCD

Es imprescindible una CCD refrigerada, o que al menos pueda operar a una temperatura constante.

Cuantos más niveles de gris pueda distinguir, mejor, ya que han de buscarse diferencias de brillo en el cielo muy sutiles. Por eso no es suficiente con una cámara de 8 bits, sino que es preferible emplear, al menos, una de 12 bit, aunque son mejores, lógicamente, las de 14 y 16 bits. Esta mayor profundidad de bits también asegura una sustracción de imágenes de una mayor calidad.

Es importante, además, que el perfil de brillo de las imágenes (PSF) sea lo más estable posible. En ausencia de turbulencias atmosféricas y con un guiado excelente, el perfil de brillo de las imágenes será determinado exclusivamente por la óptica y será muy similar en noches distintas.

Los filtros

Los ecos de supernova son generalmente más azulados que la luz directa del estallido de la estrella, debido a que los pequeños granos de polvo interestelar relfejan la luz azul con mayor eficiencia que la roja. Por eso los filtros de 700 nanometros  o más se consideran mejores para este cometido, también porque estos filtros mejoran el contraste de las imágenes, al eliminar el resplandor rojizo de nuestra atmósfera.

Pueden ser útiles los filtros nebulares de banda ancha que bloquean la luz roja e infrarroja tanto como la contaminación lumínica y todo tipo de emisiones producidas por el aire.

Debido a que la dispersión de la luz de la Luna es azulada, deberán buscarse noches sin luna.

El programa informático (software)

Las funciones clave del programa que se emplée para analizar las imágenes son:

  • La habilidad para alinear dos imágenes tomadas en noches distintas.
  • La igualación de los PSF (perfiles de brillo) de las imágenes.
  • El ajuste de las diferencias de brillo del cielo.
  • La sustracción de una imagen a la otra.

ISIS. Es gratuito y más fácil de usar gracias a su tutorial. Puede descargarse en http://www2.iap.fr/users/alard/package.html

MaxIM DL. En http://www.cyanogen.com/maxim_main.php

Mira. En http://www.mirametrics.com

En los dos últimos hay que crear los scripts necesarios para cumplir con los requisitos de eficiencia, aunque hay grupos de usuarios en la web que pueden proporcionar una valiosa ayuda.

Qué buscar

Se estima que los ecos más fuertes asociados con las supernovas de Tycho (1572), Kepler (1604) y probablemente con Cas A debería tener una luminosidad de 21,5 magnitudes por segundo cuadrado, comparable con brillo del cielo en una noche sin luna en una zona rural. Wells manifiesta que esto debería ser detectable con los medios de aficionado descritos anteriormente.

En la Gran Nube de Magallanes han sido detectados varias veces los ecos de la supernova 1987 A, visible a simple vista en el verano austral de aquel año. Esos ecos se han venido desplazando entre 10 y 30 segundos de arco por año. Esto quiere decir que se podrían detectar ecos de luz en la Vía Láctea con exposiciones tomadas en un intervalo de dos meses.

Candidatos a ecos de luz

El astrofotógrafo debe plantearse una serie de preguntas, siempre con el fin de asegurarse de que, efectivamente, ha detectado un eco de supernova.

  • ¿Ha mirado montones de imágenes diferentes de modo que está familiarizado con los distintos artefactos que introduce el sistema? ¿Está el objeto móvil cerca del borde de la CCD? ¿Podría deberse a que un poco de luz se ha dispersado en su telescopio o cámara?
  • Si tiene imágenes de más de dos épocas, ¿son los espacios de los supuestos ecos consistentes con un movimiento uniforme? (Deberían serlo). Si la zona objetivo se encuentra en el cielo nocturno, ¿podría tomar otra imagen de confirmación?
  • Si está buscando cerca de la posición de una supernova histórica o de un remanente de joven supernova, ¿está el candidato a eco más lejos del lugar de la explosión en la última imagen que en la primera? (Debería estar).

Dónde buscar

A unos 20º del ecuador galáctico

Como dijimos antes, se estima que en una galaxia como la nuestra, y siempre según los modelos, se deberían estar produciendo unas 2 explosiones de supernova por siglo. Sin embargo no todas son observables desde la Tierra debido a que nos encontramos inmersos en el propio disco de la galaxia, que nos rodea y a la vez nos oculta la mayor parte de la materia de la propia galaxia. Por eso no se ha observado una sola supernova en los últimos 400 años, de todas las que podrían haberse producido dentro de nuestra Vía Láctea.

Así, se recomienda realizar la búsqueda en el área de cielo que se encuentra dentro de unos 20º del ecuador galáctico, porque si bien las nubes de gas y polvo nos estarían ocultando todas esas supernovas que podrían haberse producido en los últimos 400 años (8 supernovas), sí que ha habido tiempo para que la luz haya recorrido la distancia necesaria para que se refleje en las nubes de gas y polvo que se sitúan más separadas del plano fundamental de nuestra galaxia.

Cerca de las supernovas históricas

En la tabla insertada figuran las coordenadas de las 6 supernovas históricas registradas hasta la fecha.

Supernova Constelación Distancia A. R.
Declinación
Tipo
1006 Lupus 7.200 años luz 15h 02,8′ -41º 57′ Ia
1054 Taurus 6.500 años luz 05h 34,6′ +22º 01′ II
1181 Cassiopeia 10.400 años luz 02h 05,6′ +64º 50′ II
1572 Cassiopeia 7.800 años luz 00h 25,1′ +64º 10′ Ia
1604 Ophiuchus 9.500 años luz 17h 30,6′ -21º 29′ ?
Cas A Cassiopeia 11.000 años luz 23h 23,4′ +58º 49′ II

Este mapa nos da una idea de dónde se encuentran las zonas más interesantes para obtener una búsqueda positiva en las inmediaciones de la constelación de Cassiopeia.

Supernovas en Cassiopeia
Regiones óptimas para la búsqueda de ecos de luz en torno a los sitios donde explotaron
tres de nuestras supernovas históricas.

 

En torno a  determinadas radiofuentes

A lo largo del ecuador galáctico existen numerosas radiofuentes compactas, perfectas candidatas a ser remanentes de supernova. Doug Wells se refiere especialmente a G13.9-0.0 (coordenadas: 18h 15′ 36,6″; -16º 52′ 47″) y G14.4-0.0 (coordenadas: 18h 16′ 50,7″; -16º 52′ 47″).

Otros muchos remanentes de supernovas jóvenes se pueden encontrar aquí: “Búsqueda en Google”

Acerca de Doug Welch

Es profesor de Física y Astronomía en la Universidad McMaster de Ontario, Canadá, y un entusiasta de la colaboración entre los astrónomos aficionados y los profesionales.

Espera, emocionado, los correos de las personas interesadas en aportarle imágenes de ecos de supenova, en su dirección de correo electrónico: welch at physics.mcmaster.ca

Su página web en la universidad: http://www.physics.mcmaster.ca/people/faculty/Welch_DL_h.html

Publicado en Evolución Estelar, Observación y telescopios | Comments Off on Ecos de Supernova en la Vía Láctea
October 15th, 2008

Desde el sureste peninsular español, incluyendo toda la costa mediterránea y Baleares, se podrá observar una ocultación de varias estrellas del cúmulo de las Pléyades, por la Luna.

La fecha: el 13 de noviembre de 2008.
La hora de comienzo del fenómeno: poco antes de las 19:00 Tiempo Universal (TU), 20.00 Hora Local.

La fase de la Luna será de prácticamente llena. A pesar de ello, el brillo de las estrellas principales del cúmulo de las Pléyades será sufieciente como para poder observar el fenómeno.

Las dos estrellas más brillantes que veremos “pasar por detrás” de la Luna son Atlas y Maia

Las Pléyades, o M45

La Luna no pasará por el centro del cúmulo desde ningún lugar de nuestra geografía. El mejor lugar para observarlo será el archipiélago de las Islas Baleares.

Descarga de archivo PDF con los datos principales de la ocultación
Para conocer la hora a la que podremos observar la ocultación de cada una de las dos estrellas, debemos conocer previamente nuestras coordenadas, y consultar la columna “Universal Time” (Tiempo Universal). Para hallar la Hora Local, sumaremos 1 hora al Tiempo Universal.

Página con la información más completa de todas las ocultaciones en Europa hasta final de año .

Página sobre ocultaciones (Lunar Grazing Occultations)

Publicado en Astronomía, Observación y telescopios | Comments Off on Costa mediterránea: ocultación de las Pléyades
  •  

     

  •  

     

  •  

     

     

     

  • Etiquetas

  •  

     

  • Archivo de publicaciones

  •  

     

  •  

     

  • Mapa del sitio

  • ?>